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Abstract

Finite time thermodynamics, a subfield of irreversible thermodynamics, is employed to model a cascaded thermoelectric generator,
which incorporates all the essential features of a real heat engine. Control volume formulation of a cascaded thermoelectric element
was carried out over a small but finite temperature gap to comply with the principles of irreversible thermodynamics. Three important
dimensionless parameters are identified to designate poor Thomson effect; low thermal conductivity and low electrical resistivity of a
good semiconductor or semimetal. For ideal values of these parameters it has been demonstrated that exactly half of the Joulean heat
arrives at both hot and cold junction when temperature maximum passes through the longitudinal center of the thermoelectric element.
In general when Thomson heat cannot be neglected, the maximum and the minimum permissible length of any individual module of a
cascaded thermoelectric device is predicted involving thermoelectric properties of the materials and passing current. It is observed that
maximum permissible length is devoid of dependence on applied temperature gradient whereas the minimum allowable length is not.
When half the Joulean heat affects hot end and half the cold side, thermal conductance inventory is allocated equally between the high
and low temperature side for best possible device performance. Finally, it has been argued that the choice of constancy of total conduc-
tance is not only a natural constraint but also a purely realistic design criterion for heat engines or refrigerators. Such design prescriptions
those lead to the prediction of shape and structure in any flowing system is reported in open literature as constructal principle.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermoelectric generator is a useful and environment
friendly device for direct energy conversion. Especially
the capacity of Peltier and Seebeck effect to dispense with
the moving parts in the realm of energy transformation
from heat to electricity and vice versa is more appealing
in such devices. With the advent of semiconductor materi-
als the efficiency of a thermoelectric generator can even be
an alternative for the conventional heat engines [1].
Another perspective of thermodynamic modeling of a ther-
moelectric generator is that it includes all the crucial
features of a real heat engine in a relatively simple way
where closed form expressions are obtained for the power
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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versus efficiency characteristics [2]. Here each generic
source of irreversibility is identified and quantified in this
process to draw a one is to one correspondence between
the conventional heat engine and the thermoelectric gener-
ator. So, the mathematical modeling of a simple thermo-
electric generator can also replace the elaborate task of
simulating an actual complex power plant, heat engine or
refrigerator.

Much effort has been bestowed in finite time thermody-
namics (FTT) [3–8], to model real heat engines. FTT mod-
eling of thermoelectric generator presents a full-featured
analysis of real engines. Since all heat engine models aim
at providing a realistic margin for an improvement of
actual systems, an analysis based on FTT figure-of-merit
hints a more practical assessment of a maximum attainable
improvement in comparison to the margin based on Car-
not efficiency. Thus, the FTT modeling is a worthy endea-
vor. However, it is to be noted that FTT modeling does not
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Nomenclature

A surface area of the heat exchanger
C some finite constant, Eq. (41a) or (41b)
CA some finite constant, Eq. (41d)
CB some finite constant, Eq. (41f)
CK some finite constant, Eq. (41c)
CZ some finite constant, Eq. (41e)
FH fraction of Joulean heat affecting high tempera-

ture heat source, Eq. (18)
FL fraction of Joulean heat affecting low tempera-

ture sink, Eq. (18)
I total current
Jx electrical current density vector along x-direc-

tion
K thermal conductance, Eq. (25b)
KH thermal conductance of high temperature side

heat exchanger
KL thermal conductance of low temperature side

heat exchanger
L length of the leg of a thermoelectric device
n a type of semiconductor material
p type of semiconductor material
_QH heat transfer rate from the high temperature

source
_Q
�
H heat flow rate to the hot end, Eq. (12)
_Q�H heat flow rate to the hot end, Eq. (23)
_QJ Joulean heat transport rate, Eq. (14)
_Qk conducted heat transport rate, Eq. (13)
_QL heat transfer rate from the low temperature sink
R total electrical resistance, Eq. (25a)
T temperature distribution function, Eq. (1)
TLC low temperature level at which the device actu-

ally receives the heat
THC high temperature level at which the device actu-

ally receives the heat
DT applied temperature gap across a module
U overall heat transfer coefficient
x coordinate direction
z figure of merit, Eq. (39a)

Greek symbols

a Seebeck coefficient of the material
e effectiveness of heat exchanging equipment
c cost of unit conductance
j thermal conductivity of the material

je electrical conductivity
jl lattice thermal conductivity
k a dimensionless parameter, Eq. (6b) or (15)
K a dimensionless parameter, Eq. (6a)
h nondimensional temperature, Eq. (4a)
h* nondimensional temperature distribution with-

out Thomson heat consideration, Eq. (19)
h* nondimensional temperature distribution with

Thomson heat consideration, Eq. (8)
q electrical resistivity of the material
r electrical conductivity or reciprocal of electrical

resistivity of the material
s Thomson coefficient of the material
n dimensionless length of the device arm, Eq. (4b)
n* location of maximum temperature with Thom-

son heat consideration, Eqs. (9), (11a) and (11b)
n* location of maximum temperature without

Thomson heat consideration, Eqs. (21) and (22)
f dimensionless temperature, Eq. (20)

Subscripts

e quantities of electrical origin
l quantities of lattice thermal origin
H quantities related to high temperature source
J quantities related to component of Joulean heat
L quantities related to low temperature sink
max maximum
min minimum
n n-type material
p p-type material
x along x coordinate direction

* quantities pertaining to no Thomson heat con-
sideration

Superscripts

* quantities pertaining to Thomson heat consider-
ation

0 constancy of physical parameter

Symbols

h i represents an averaged quantity
D represents a difference
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stipulate the highest ceiling for the efficiency rather only
dictates the lower bound of the optimal efficiency of a heat
engine performance affected by finite heat transfer rate irre-
versibility [9]. In practice, heat engines can operate between
the two extreme limits: one is the reversible or maximum
efficiency operation and another is the irreversible or max-
imum power condition. However, in practical situation the
optimum design criterion is a compromise between the effi-
ciency and power output. In the terminologies of thermo-
economics [10], optimum operating point is a trade off
between the cost of fuel and the cost of installed hardware.

In a FTT model generally all possible irreversibilities are
attributed only to the heat transport process external to the
engine and not to the internal conversion of heat into
power [11]. For a FTT model of a thermoelectric generator
internal irreversibilities remain in series. Bypass heat leak
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Fig. 1. Basic elements of a thermoelectric power generator.
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[12] incorporated into the modeling is an additional shunt
among other possible alternatives [13–15] that make the
engine to operate irreversibly. In the present study, bypass
heat leak is identified as a major contribution to the mea-
sure of internal irreversibility. The conducting mechanical
support, which is the locus of heat transfer across a finite
temperature gap, is the geometrical path of irreversibility
transport. The bypass heat leak phenomenon retains all
the essential features of irreversibility of the engine and
offers an elegant mathematical perspective for engine mod-
eling. Though in a thermoelectric generator Joulean heat-
ing itself remains as an inherent source of irreversibility,
bypass heat leak has normally higher orders of magnitude
than internal irreversibility alone in the range of optimum
engine performance.

The architecture of optimized flow-system, in general, is
a commonplace occurrence in engineering and nature.
Solutions of many challenges have been unified under the
single encompassing physics based theory, the constructal
principle [16], which conceives that the geometry (shape
and structure) is generated in pursuit of global perfor-
mance subject to global constraints, in flow systems the
geometry of which is free to vary. In this context, a thermo-
electric device can be thought of a flowing system through
which heat and current flows. Calculation of efficiency of
thermoelectric device is reported in open literature [17].
There the conditions and consequences of heat transport
between the heating and the cooling medium and the junc-
tions are not addressed. The objective of the present inves-
tigation aims at reporting finite time irreversibility of heat
transport mechanism; the distribution of Joulean heat into
the hot and cold space and its consequences on optimal
allocation of heat exchanger inventory and finally to pre-
dict the geometrical shape and size of each individual mod-
ule of a cascaded thermoelectric device. As it is pointed out
in a treatise [18] that different assumptions can lead to dif-
ferent results, the role of assumptions in describing the
model will also be stressed.

2. The physical model

To manifest the effect of electric current and heat
transfer irreversibilities on the thermal efficiency of a ther-
moelectric power generator, we consider the two-leg assem-
bly of the basic components of a device as is shown in
Fig. 1. The hot junction is maintained at a high tempera-
ture level THC and it receives a net heat transfer rate _QH.
Similarly, the cold end of the two-leg arrangement is held
at constant temperature TLC such that the net heat rejec-
tion rate by it is _QL. Ideally, the two legs are one-dimen-
sional conductors along which x is directed from THC to
TLC. The potential difference generated due to Seebeck
effect causes to flow a total current I through the total elec-
trical resistance R of the elementary module of length L of
a cascaded system.

The two legs n and p are generally chosen to be of dis-
similar semiconductors or semimetals. In a conventional
junction design, hot ends of the two legs are both electri-
cally and thermally connected through a highly conductive
material. Thermodynamically this arrangement is equiva-
lent to that of simple design in which n- and p-legs are
joined end to end. The lateral surfaces of both the legs
are insulated electrically and thermally to prevent the con-
tact from each other. Additionally, the cold ends of the two
legs are either insulated only electrically or situated sepa-
rately from each other.

In literature, thermodynamics of irreversible process is
applied to a thermocouple where the legs may have an arbi-
trary shape and size; the composition may be inhomoge-
neous and anisotropic for the transport quantities and
the properties of the materials are arbitrary functions of
temperature field. Since, the maximum thermal efficiency
of the device is independent of the shape of the leg of a
thermoelectric element [19], in our present study its shape
and size is immaterial. The geometry and physical property
of the n-leg generally differs from those of p-leg. Here we
will cast the problem using control volume approach along
with the method of average parameters [17].

3. Control volume formulation of a single thermoelectric

element

We will seek the temperature distribution along the
device leg, as it is one of chief importance for the evalua-
tion of thermal efficiency of the device. Under steady state
condition for the divergence of the flux vector, total energy
remains constant along any coordinate direction of a
dimensional space. With reference to Fig. 2, specializing
along x-direction for each leg we obtain [20]

TJx
oa
ox

� �
T

þ sJx
dT
dx

� qJ 2
x �

d

dx
j
dT
dx

� �
¼ 0 ð1Þ

where Jx is the electrical current density vector along
x-direction, T is the temperature distribution function, j
is the thermal conductivity of the conductor, q is the
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Fig. 2. A cascading thermoelectric element exposed to simultaneous
current and heat flow.
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electrical resistivity of the conductor, a and s are the See-
beck and the Thomson coefficients, respectively.

The solution of this equation for temperature distribu-
tion demands a specification of the dependence of a, j, q
and s on x or T. One viable approximation consists of
replacing all transport coefficients by their averages [17].
In this spirit, the first term in Eq. (1) drops out and we
arrive at the equation

hji d
2T
dx2

� hsiJx
dT
dx

þ hqiJ 2
x ¼ 0 ð2Þ

where the symbol h i represents an averaged quantity.
Before attempting to solve the resulting simplified equa-

tion, it is to be noted that the approximation method is
valid only if

THC � T LC ð3aÞ
but

THC > T LC ð3bÞ

such that the temperature difference across the thermoelec-
tric element DT = THC � TLC > 0. These mathematical
restrictions are of little practical interest, since for opera-
tion of the device at higher efficiency, temperature differ-
ence should be as high as possible on the whole of the
thermoelectric device. On the contrary, for very high tem-
perature, the phenomenological representation of irrevers-
ible process is inappropriate. Hence, the assumption of
negligible temperature gap is consistent with the physical
theory developed in literature [21]. In the real world of
engineering design, it represents a cascaded system, where
power generation takes place discretely in successive stages
in series with each other and the power is extracted at each
stage. With the increase of number of modules, the temper-
ature gap across any module is reduced and the discrete
power generation mimics the continuous power production
from a single module.

Now, we will nondimensionalize Eq. (2) using

h ¼ T � T LC

THC � T LC

¼ T � T LC

DT
ð4aÞ

and

n ¼ x
L
. ð4bÞ
The resulting equation takes the form

d2h

dn2
� K

dh
dn

þ k ¼ 0 ð5Þ

where

K ¼ hsiJxL
hji ð6aÞ

and

k ¼ hqiðJxLÞ2

hjiDT . ð6bÞ

The boundary conditions transform into

h ¼ 1 at n ¼ 0 ð7aÞ
and

h ¼ 0 at n ¼ 1. ð7bÞ
Solution of Eq. (5) subjected to boundary conditions (7a)
and (7b) reads as

h� ¼ k
K
nþ

1þ k
K

1� expðKÞ

� �
expðKnÞ þ

expðKnÞ þ k
K

expðKÞ � 1
. ð8Þ

Now we would like to locate the regime of maximum
temperature. This is an important observation when we
mimic a thermoelectric device with that of heat engine
[2]. In a finite-time heat engine model there is a continuous
variation of temperature from heat source to heat sink
along the physical path of energy transport. When both
the legs of the thermoelectric device is of the same length,
the location of maximum temperature in either of the leg
of the thermoelectric generator is obtained by setting
dh�

dn ¼ 0, which yields

n� ¼ 1

K
ln

1

1þ K
k

expðKÞ � 1

K

� �� �
. ð9Þ

Now, we would like to prescribe some design conditions
those will cause the temperature maximum to pass through
the geometrical mid-point of the module of a cascaded
thermoelectric device. Each individual module can be
thought of an independent heat engine or one-dimensional
insulation system. For a narrow temperature gap across the
module, the temperature maximum passes through the
mid-point of the device and it experiences a minimum
entropy generation or equivalently maximum efficiency
condition [22]. From the definition (6a) the imposition of
the design criterion K! 0 leads to the specification of max-
imum permissible length of any individual thermoelectric
module as

Lmax ¼
hji
hsi �

1

Jx
. ð10aÞ

Again the design prescription K
k ! 0 stipulates from the

definitions (6a) and (6b) that the minimum permissible
length of the individual thermoelectric module as

Lmin ¼
hsi
hqi �

DT
Jx

. ð10bÞ



Fig. 3. Location of maximum temperature in concurrence with Thomson effect.
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Thus it is to be observed that the minimum length of
the device arm depends on the applied temperature gap
whereas maximum permissible length is devoid of depen-
dence of such imposed temperature gradient.

Eq. (10b) as a design criterion transforms Eq. (9) into
the form

n� ¼ 1

K
ln

expðKÞ � 1

K

� �
. ð11aÞ

Eq. (11a) is plotted in Fig. 3, which shows that for K ! 0,
the relation between n and K is linear. Expanding the right
side of Eq. (11a) analytically around the singular point
K = 0 and then passing to the limit, we have

lim
K!0

n� ¼ lim
K!0

1

K
ln

1

K
1þKþK2

2!
þK3

3!
þ � � �

� �
� 1

� �� �
¼ 1

2
.

ð11bÞ
Thus Eq. (11b) clearly demonstrates that for K = 0, tem-
perature maximum passes through the geometric mid point
of the conductor as the electrical current changes the direc-
tion. As long as Eqs. (3a) and (3b) are valid the result ob-
tained in Eq. (11b) is physically realistic. So, in order to
construct a cascaded system the length of the first junction
should be half of the total permissible length of the assem-
bly of the thermocouples. The geometric mid point will act
as a heat source for the next junction and so on.

Heat flow towards the hot end is calculated by invoking
Fourier conduction law as

_Q
�
H ¼ �jA

oT
ox

����
x¼0

¼ � _Qk

oh�

on

����
n¼0

¼ _QJ

K� expðKÞ þ 1

K expðKÞ � K

� �

ð12Þ
where the conducted heat through cross-sectional area A

and of length L is

_Qk ¼
jADT
L

ð13Þ

and the Joulean heat source of cross-sectional area A and
length L is

_QJ ¼ qJ 2
xAL ð14Þ
such that as K ! 0

k �
_QJ

_Qk

. ð15Þ

We calculate the ratio
_Q
�
H
_QJ

��� ��� in the limit K ! 0 in order to

examine that what proportion of Joulean heat moves to
the hot end. On calculating the limit, using L�Hospital�s
theorem, we have

lim
K!0

_Q
�
H

_QJ

�����
����� ¼ lim

K!0

K� expðKÞ þ 1

K expðKÞ � K

����
���� ¼ 1

2
. ð16Þ

From Eq. (16) we observe that exactly half of the Joulean
heat proceeds to the hot end. The first law of thermody-
namics asserts that precisely fifty percent of the Joulean
heat contributes to the cold junction.

If the electric current changes its direction the Thomson
heat also changes its sign. It implies that if two parallel con-
ductors of almost the same geometrical and thermoelectri-
cal attribute are placed in communication with a single
reservoir and if the same strength of current flows in oppo-
site directions through the two conductors, the Thomson
heat so generated by one conductor agrees nearly with the
Thomson heat absorbed by the other. Thus, the effect of
Thomson heat is almost nullified. Hence the net heat trans-
fer interaction with the thermal reservoir comprises of
rejecting only two Joulean heating rates generated by the
two conductors. From Eq. (6a) it can be noted that the
Thomson effect need not be absent even for a vanishingly
small value of the parameter K as for any individual cascad-
ing member, the passing current and length of the element is
small and heat transfer irreversibility phenomenon over-
whelms Thomson effect. Another mathematical way of
looking into the problem is the imposition of the restrictions
that j, q and a are constants. Then both oa

ox

� 	
T

and
s ¼ T oa

oT

� 	
x
vanishes, such that Eq. (2) further reduces to

k0
d2T
dx2

þ q0J
2
x ¼ 0 ð17Þ
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where the constant values are indicated by the zero
subscript.

At the first sight it seems that the foregoing argument
waives the imposition of the restriction that the tempera-
ture difference should be small if we ignore the origin of
Eq. (17). It is to be noted that the constancy of these ther-
mophysical and electrical properties demand in turn the
narrow temperature range of operation of the individual
element of the device. Alternatively, Eq. (17) can be readily
obtained by applying first law of thermodynamics for a
control volume, where conduction of heat takes place with
distributed heat source, without introducing the formalism
of irreversible thermodynamics. Unlike thermionic device a
cascaded thermoelectric element works under narrow tem-
perature range and hence we can neglect the very effect of
radiation and convection. The distribution of temperature
along a thin conductor under the influence of high current
involving radiative and conductive transfer is reported in
the literature [23–26] from a different perspective. Contrary
to Thomson heat consideration above, in this limiting case
we have the liberty to formulate the boundary conditions
as follows:

T ¼ THC at x ¼ 0 ð18aÞ
T ¼ T LC at x ¼ L ð18bÞ

and

THC > T LC. ð18cÞ

The absolute value of both THC and TLC are but small.
Nondimensional solution of Eq. (17) subjected to the

boundary conditions, Eqs. (18a)–(18c) is

h� ¼ ð1� nÞ þ f
2
ðn� n2Þ ð19Þ

where

f ¼ q0ðJxLÞ2

j0DT
¼

_QJ

_Qk

. ð20Þ

Once again the location of maximum temperature is ob-
tained by setting dh�

dn ¼ 0 of Eq. (19) and the final result is

n� ¼
1

2
1� 2

f

� �
. ð21Þ

Passing to the limit f ! 1 in Eq. (21)

lim
f!1

n� ¼ lim
f!1

1

2
1� 2

f

� �
¼ 1

2
ð22Þ

we notice that n* asymptotically approaches to the finite
value 1

2
. So the numerical value of f should be high for tem-

perature maximum to occur at the geometrical middle of
the conductor. Thus even for the idealized situation when
the thermoelectric element behaves like a resistor under
the influence of low current, the placement of the second
junction begins at the middle as if the thermoelectric ele-
ment were not cascaded.
Heat flow inward the high temperature side is given by

_Q�H ¼ �jA
oT
ox

����
x¼0

¼ � _Qk

oh�
on

����
n¼0

¼ _QJ

1

f
� 1

2

� �
. ð23Þ

We evaluate the ratio
_Q�H
_QJ

��� ��� in the limit f ! 1 as

lim
f!1

_Q�H
_QJ

����
���� ¼ lim

f!1

1

f
� 1

2

����
���� ¼ 1

2
. ð24Þ

Eq. (24) confirms that only half of the Joulean heat goes to
the hot end. Energy balance states that sharply half of the
Joulean heat arrives at the cold end side.

4. Control volume formulation for the complete

thermoelectric device

In order to maintain a consistency with the standard
notation of analysis prevailing in the literature we will
define the relationship between electrical resistance and
resistivity; thermal conductance and conductivity of the
thermoelectric element introduced in the foregoing section.
Electrical resistance R is related to its counterpart resistiv-
ity q through

R ¼ qL
A

. ð25aÞ

Thermal conductance K is dependent on conductivity j as

K ¼ jA
L

. ð25bÞ

For the control volume formulation of the integrated
thermoelectric device as shown in Fig. 4, we employ
Newton�s law of cooling [27]. First law of thermodynamics
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analysis neglecting Thomson effect enables us to write
down the following heat transport equations in algebraic
forms [2]. Finite time heat transfer rate to the hot junction
_QH is given by

_QH ¼ KHðTH � THCÞ ¼ aITHC þ KðTHC � T LCÞ � F HI2R

ð26Þ

where K and KH are the thermal conductances across the
reversible compartment and the hot junction, respectively.
TH is the temperature of the high temperature source and
THC is that of thermoelectric element such that THC 6 TH.
Fraction of Joulean heat entering into the hot junction is
FH. Eq. (26) can be rearranged as

ðK þ KH þ aIÞTHC � KT LC � ðKHTH þ F HI2RÞ ¼ 0.

ð26aÞ

Similarly, finite time heat transfer rate to the cold junction
_QL is obtained as

_QL ¼ KLðT LC � T LÞ ¼ aIT LC þ KðTHC � T LCÞ þ F LI2R

ð27Þ

where KL is the thermal conductance across the cold junc-
tion. TL is the temperature of the low temperature sink and
TLC is that of thermoelectric component such that TLC P
TL. Fraction of Joulean heat entering into the cold junction
is FL.

Eq. (27) can be rewritten as

KTHC � ðK þ KL � aIÞT LC þ ðKLT L þ F LI2RÞ ¼ 0. ð27aÞ

For the Joulean heat distribution it is obvious that

F H þ F L ¼ 1. ð28Þ
Now, the system of Eqs. (26a), (27a) and (28) has four

variables THC, TLC, FL and FH rendering single degree of
freedom. Choosing FH to be that degree of freedom we
solve for THC and TLC to obtain

THC ¼
K ðKHTHþKLT LÞþ I2R

 �

þðKL�aIÞðKHTHþF HI2RÞ
KðKHþKLÞþðKHþaIÞðKL�aIÞ

ð29aÞ
and

T LC ¼
K ðKHTHþKLT LÞþ I2R

 �

þðKHþaIÞðKHTHþF HI2RÞ
KðKHþKLÞþðKHþaIÞðKL�aIÞ .

ð29bÞ

Now, we proceed to seek the possible set of solutions for
the assumed unknown variable FH or FL. Among many
other methodologies [28], we devise our own based on
the symmetry of the problem as follows. Eliminating THC

between Eqs. (26a) and (27a) and providing an expression
for TLC from Eq. (29b) we obtain

KðKHTH þ KLT LÞ þ KHKLT L½ � þ aKLT LI

þ R½K þ F LKH�I2 þ aF LRI3
¼ KðKHTH þ KLT LÞ þ KHKLT L½ � þ aKLT LI

þ R F LðK þ KHÞ þ F HK½ �I2 þ aF LRI3. ð30Þ

Comparing like powers of I, we have for the term I2

K þ F LKH ¼ ðK þ KHÞF L þ KF H. ð31Þ
Analogously, TLC eliminant of Eqs. (26a) and (27a) with the
insertion of the expression for THC from Eq. (29a) we get

KðKHTH þ KLT LÞ þ KLKHTH½ � � aKHTHI

þ R½K þ F HKL�I2 � aF HRI3

¼ ðK þ KLÞKHTH þ KKLT L½ � � aKHTHI

þ R F HðK þ KLÞ þ F LK½ �I2 � aF HRI3. ð32Þ

Equating similar powers of I on both sides, we have for I2

K þ F HKL ¼ ðK þ KLÞF H þ KF L. ð33Þ
Any particular solution of two identities (30) and (33) must
have general functional form involving K, KH and KL that
is

F H ¼ F HðK;KH;KLÞ ð34aÞ
and

F L ¼ F LðK;KH;KLÞ. ð34bÞ
On following symmetry, we assume a trial solution of the
form

F H ¼ 1

2

KHKL þ KKH þ KKH

KHKL þ KKH þ KKL

� �

¼ 1

2

KHKL þ 2KKH

KHKL þ KKH þ KKL

� �
. ð35aÞ

Employing Eq. (35a) in Eq. (28) we obtain

F L ¼ 1

2

KHKL þ KKL þ KKL

KHKL þ KKH þ KKL

� �

¼ 1

2

KHKL þ 2KKL

KHKL þ KKH þ KKL

� �
. ð35bÞ

Substituting Eqs. (35a) and (35b) into the identity Eq. (31)
we have for both sides a common expression

C1 ¼
4KKHKL þ 2K2ðKH þ KLÞ þ K2

HKL

2ðKHKL þ KKH þ KKLÞ
. ð36aÞ

Similarly, inserting Eqs. (35a) and (35b) into the other
identity, Eq. (33), we obtain another common expression

C2 ¼
4KKHKL þ 2K2ðKH þ KLÞ þ KHK2

L

2ðKHKL þ KKH þ KKLÞ
. ð36bÞ

Eqs. (36a) and (36b) confirms that Eqs. (35a) and (35b) are
a set of possible solutions for the identities (31) and (33).
Further by simple inspection we observe that Eqs. (31)
and (33) admit the following numerical values

F H ¼ 0 and F L ¼ 1 ð37aÞ
F H ¼ 1 and F L ¼ 0 ð37bÞ
F H ¼ 1

2
and F L ¼ 1

2
. ð37cÞ



Table 1
Effect of some limiting combinations of conductance allocation on Joulean heat distribution

Range or value FH FL Remarks

K = Finite, KH = Finite, KL = Finite 1
2

1
2 KH = KL

K = Finite, KH = Finite, KL = Finite 1 0 KHKL = �2KKL

K = Finite, KH = Finite, KL = Finite 0 1 KHKL = �2KKH

K = 0, KH = 0, KL = 0 1
2

1
2 –

K = Finite, KH = 0, KL = Finite 0 1 –
K = Finite, KH = Finite, KL = 0 1 0 –
K = 0, KH = Finite, KL = Finite 1

2
1
2 –

K = Infinite, KH = Finite, KL = Finite KH

KHþKL

KL

KHþKL
–

K = Finite, KH = Infinite, KL = Finite 1
2

2KþKL

KþKH

� 
1
2

KL

KHþKL

� 
–

K = Finite, KH = Finite, KL = Infinite 1
2

KH

KþKH

� 
1
2

2KþKH

KþKH

� 
–

K = Infinite, KH = Infinite, KL = Infinite 0 or 1 1 or 0 –
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Now, we will examine for what combinations of K, KH and
KL these numeric values are returned for the functional
relations (31) or (33). Eqs. (35a) and (35b) along with
Eq. (37a) says that

KHKL ¼ �2KKH. ð38aÞ
For Eq. (37b) to be tantamount with Eqs. (35a) and (35b)
one requires that

KHKL ¼ �2KKL. ð38bÞ
Equivalency of Eqs. (35a) and (35b) with Eq. (37c) de-
mands that

KH ¼ KL. ð38cÞ
Since, K, KH and KL are all nonnegative quantities, only
Eqs. (37c) and (38c) is physically realistic. Thus the neces-
sary and sufficient condition for equipartition of Joulean
heat produced is the equipartition of conductance alloca-
tions between high temperature and low temperature heat
sources. Furthermore, when one of the three conductances
runs to a very high value leaving other two in a moderate
range, Joulean heat distribution again becomes unequal.
Table 1 presents a compilation for the fraction of Joulean
heat distribution for different limiting combinations of con-
ductance allocations.

5. Consequences of equipartitioned Joulean heat

The better thermoelectric material for direct energy con-
version the higher should have the value of the dimension-
less group zT, where T is the average absolute temperature
and z is the figure-of-merit of the thermoelectric material.
This dimensionless parameter for a semimetal or semicon-
ductor can be expressed in general as [29]

zT ¼ a2T
r
j

� 
ð39aÞ

where r is the electrical conductivity and is the reciprocal
of electrical resistivity. Thermal conductivity can further
be treated as the cumulative effect of electrical conductivity
je and lattice thermal conductivity jl such that

j ¼ je þ jl. ð39bÞ
For higher orders of magnitude of the dimensionless group
on the left side of Eq. (39a) in conjunction with Eqs. (6a)
and (6b) and the conditions K ! 0 and f ! 1 we may stip-
ulate that

s ! 0þ; j ! 0þ; q ! 0þ and DT ! 0þ . ð40Þ
Thus, we conclude that the present analysis is valid even for
the finite temperature difference and the effect of Thomson
heat can be neglected for a good quality thermoelectric
material.

Eqs. (11b) and (16) together exhibits an interesting
thermodynamic property of a thermoelectric element. For
temperature maximum to occur at the geometric center
of a thermoelectric element, exactly half of the Joulean heat
approaches to the hot end and the other half to the cold
side. Similar observation is repeated through Eqs. (22)
and (24).

From Eqs. (37c) and (38c) we learn that both the hot
and cold junction experiences half of the net Joulean effect
produced and which demands in turn equal conductance
allocation on both sides. Eq. (38c) also prompts the fact
that both KH and KL are finite and hence the following
proposition holds

KH þ KL ¼ C ð41aÞ
where C is some finite constant. In engineering literature
conductance is denoted as a product of overall heat trans-
fer coefficient U and related surface area A. Thus Eq. (41a)
can be rewritten as

UHAH þ ULAL ¼ C. ð41bÞ
Allocation of heat exchanger inventory was extensively
investigated in connection with the optimization of refrig-
eration and power production both from thermodynamic
[30–32] and thermoeconomic [33] viewpoint. But the final
result of an optimization problem depends on the nature
of imposed constraint [18]. Klein [30] considered the con-
straint of the type

eHUH þ eLUL ¼ CK ð41cÞ

where e is the effectiveness of the heat exchanging equip-
ment and CK is a constant. Based on the notion that both
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conductance and entropy generation have the same dimen-
sion, Ait-Ali [31] conceived a condition of the from

_QH

TH � THC

þ
_QL

T LC � T L

¼ CA ð41dÞ

where CA is some parametric constant. On the basis of
total cost conservation of heat exchanger installation,
Antar and Zubair [33] framed a relation as

cHUHAH þ cLULAL ¼ CZ ð41eÞ

where c is the unit conductance cost and CZ has a fixed
value. Bejan [32] considered the maximization of power
production of heat engines and refrigeration load in refrig-
erators with two heat reservoirs considering total area
constraint for the heat exchangers on following the
equation

AH þ AL ¼ CB ð41fÞ
where A is the surface area of the heat exchanger and CB is
a constant due to some resource constraint. Treating Eq.
(41b) also as a constraint, Bejan concluded that in both
the cases either quantitative or qualitative equipartition
of thermal conductance inventory is valid. Similar results
have been echoed in other works [31–33]. Thus we propose
that Eq. (41b) is the most natural constraint for such cate-
gory of optimization problems. The idea of such synthetic
constraint in optimization problems was advanced by the
present authors [34].
6. Conclusions

(i) Creditably, the debatable concept of endoreversibility
[35–37] in finite-time thermodynamics can be mitigated by
incorporating some irreversibility factors to the reversible
compartment sandwiched between two irreversible cham-
bers. Consideration of bypass heat leak is a compensating
measure to this direction. Joulean heating present in a ther-
moelectric generator itself is an inherent source of irrevers-
ibility and tantamount to the frictional loss in a heat
engine. The discrimination between frictional heat leak
and heat loss due to finite rate heat transfer was first put
forward in Ref. [38]. In the current investigation bypass
heat leak is identified as a major contribution to the mea-
sure of irreversibility. The sufficiency of bypass heat leak
consideration in engine modeling is an established practice
[2].

(ii) Our analysis shows that in a thermoelectric genera-
tor Thomson effect may be neglected in one limiting case
or may not be negligible in another limiting situation even
for a vanishingly small value of a certain nondimensional
parameter K. A very high value of another dimensionless
factor f recognizes a better figure-of-merit and the opera-
tion of the thermoelectric device as cascaded system over
a small but finite temperature gap.

(iii) Three parameters K, k and f so identified are
responsible for temperature maximum to pass through
the geometrical middle of the one-dimensional physical
device. This observation is in conformity with the principle
of insulation design and the broader sense of engine mod-
eling. The parallelism between the design principle of heat
engine, heat exchanger and refrigerator to that of insula-
tion system was established by a pioneering work of Bejan
[22]. For the most efficient system, a stack of insulation is
cooled midway. Similarly the calculation of mid point tem-
perature is of intrinsic importance also in the application of
thermionic elements where an interesting phenomenon
occurs in the middle of the conductor: the temperature
reaches extremum, remains constant there and Joulean
heating and radiative heat transfer takes an equal share
of the feeded energy [23–26].

(iv) Imposing the design prescription K! 0 leads to the
limit of maximum permissible length of any individual
module of the cascaded thermocouple. Another design cri-
terion K

k ! 0 stipulates the minimum permissible length of
such module. It is to be noticed that the maximum allow-
able length depends explicitly only on the thermoelectric
properties of the material and the value of the passing cur-
rent whereas the minimum permissible length additionally
depends on applied temperature gradient.

(v) For the ideal values of these three parameters K, k
and f it is interesting to report that exactly half of the Jou-
lean heat flows into the hot end and half to the cold junc-
tion. It is to be noted that this is not equivalent to state

that half the Joulean heat affects either end [39].
(vi) Control volume formulation for the integrated

device disseminates that exactly half of the Joulean heat
affects both the junction. This observation is duly sup-
ported by experimental evidences [40,41] in a similar class
of thermoelectric devices.

(vii) It is conditioned that for finite bypass heat leak
optimal conductance allocation is equipartitioned between
high and low temperature side when Joulean heat affects
both the junction equally. This instance of equipartition
also conforms with the corollary [42] of constructal theory.
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